Complete a data frame with missing combinations of data
Source:R/complete.R
complete.dtplyr_step.Rd
This is a method for the tidyr complete()
generic. This is a wrapper
around dtplyr
translations for expand()
, full_join()
, and replace_na()
that's useful for completing missing combinations of data.
Usage
# S3 method for dtplyr_step
complete(data, ..., fill = list())
Arguments
- data
A
lazy_dt()
.- ...
<
data-masking
> Specification of columns to expand or complete. Columns can be atomic vectors or lists.To find all unique combinations of
x
,y
andz
, including those not present in the data, supply each variable as a separate argument:expand(df, x, y, z)
orcomplete(df, x, y, z)
.To find only the combinations that occur in the data, use
nesting
:expand(df, nesting(x, y, z))
.You can combine the two forms. For example,
expand(df, nesting(school_id, student_id), date)
would produce a row for each present school-student combination for all possible dates.
When used with factors,
expand()
andcomplete()
use the full set of levels, not just those that appear in the data. If you want to use only the values seen in the data, useforcats::fct_drop()
.When used with continuous variables, you may need to fill in values that do not appear in the data: to do so use expressions like
year = 2010:2020
oryear = full_seq(year,1)
.- fill
A named list that for each variable supplies a single value to use instead of
NA
for missing combinations.
Examples
library(tidyr)
tbl <- tibble(x = 1:2, y = 1:2, z = 3:4)
dt <- lazy_dt(tbl)
dt %>%
complete(x, y)
#> Source: local data table [4 x 3]
#> Call: merge(`_DT5`[, CJ(x = x, y = y, unique = TRUE)], `_DT5`, all = TRUE,
#> by.x = c("x", "y"), by.y = c("x", "y"), allow.cartesian = TRUE)
#>
#> x y z
#> <int> <int> <int>
#> 1 1 1 3
#> 2 1 2 NA
#> 3 2 1 NA
#> 4 2 2 4
#>
#> # Use as.data.table()/as.data.frame()/as_tibble() to access results
dt %>%
complete(x, y, fill = list(z = 10L))
#> Source: local data table [4 x 3]
#> Call: merge(`_DT5`[, CJ(x = x, y = y, unique = TRUE)], `_DT5`, all = TRUE,
#> by.x = c("x", "y"), by.y = c("x", "y"), allow.cartesian = TRUE)[,
#> `:=`(z = fcoalesce(z, 10L))]
#>
#> x y z
#> <int> <int> <int>
#> 1 1 1 3
#> 2 1 2 10
#> 3 2 1 10
#> 4 2 2 4
#>
#> # Use as.data.table()/as.data.frame()/as_tibble() to access results