Function reference
-
lazy_dt()
- Create a "lazy" data.table for use with dplyr verbs
-
collect(<dtplyr_step>)
compute(<dtplyr_step>)
as.data.table(<dtplyr_step>)
as.data.frame(<dtplyr_step>)
as_tibble(<dtplyr_step>)
- Force computation of a lazy data.table
-
arrange(<dtplyr_step>)
- Arrange rows by column values
-
count(<dtplyr_step>)
- Count observations by group
-
distinct(<dtplyr_step>)
- Subset distinct/unique rows
-
filter(<dtplyr_step>)
- Subset rows using column values
-
group_by(<dtplyr_step>)
ungroup(<dtplyr_step>)
- Group and ungroup
-
group_modify(<dtplyr_step>)
group_map(<dtplyr_step>)
- Apply a function to each group
-
head(<dtplyr_step>)
tail(<dtplyr_step>)
- Subset first or last rows
-
mutate(<dtplyr_step>)
- Create and modify columns
-
transmute(<dtplyr_step>)
- Create new columns, dropping old
-
relocate(<dtplyr_step>)
- Relocate variables using their names
-
rename(<dtplyr_step>)
rename_with(<dtplyr_step>)
- Rename columns using their names
-
select(<dtplyr_step>)
- Subset columns using their names
-
slice(<dtplyr_step>)
slice_head(<dtplyr_step>)
slice_tail(<dtplyr_step>)
slice_min(<dtplyr_step>)
slice_max(<dtplyr_step>)
- Subset rows using their positions
-
summarise(<dtplyr_step>)
- Summarise each group to one row
-
left_join(<dtplyr_step>)
- Join data tables
-
complete(<dtplyr_step>)
- Complete a data frame with missing combinations of data
-
drop_na(<dtplyr_step>)
- Drop rows containing missing values
-
expand(<dtplyr_step>)
- Expand data frame to include all possible combinations of values.
-
fill(<dtplyr_step>)
- Fill in missing values with previous or next value
-
nest(<dtplyr_step>)
- Nest
-
pivot_wider(<dtplyr_step>)
- Pivot data from long to wide
-
pivot_longer(<dtplyr_step>)
- Pivot data from wide to long
-
replace_na(<dtplyr_step>)
- Replace NAs with specified values
-
separate(<dtplyr_step>)
- Separate a character column into multiple columns with a regular expression or numeric locations
-
unite(<dtplyr_step>)
- Unite multiple columns into one by pasting strings together.