Skip to content

This is a method for the tidyr pivot_wider() generic. It is translated to data.table::dcast()

Usage

# S3 method for dtplyr_step
pivot_wider(
  data,
  id_cols = NULL,
  names_from = name,
  names_prefix = "",
  names_sep = "_",
  names_glue = NULL,
  names_sort = FALSE,
  names_repair = "check_unique",
  values_from = value,
  values_fill = NULL,
  values_fn = NULL,
  ...
)

Arguments

data

A lazy_dt().

id_cols

<tidy-select> A set of columns that uniquely identify each observation. Typically used when you have redundant variables, i.e. variables whose values are perfectly correlated with existing variables.

Defaults to all columns in data except for the columns specified through names_from and values_from. If a tidyselect expression is supplied, it will be evaluated on data after removing the columns specified through names_from and values_from.

names_from, values_from

<tidy-select> A pair of arguments describing which column (or columns) to get the name of the output column (names_from), and which column (or columns) to get the cell values from (values_from).

If values_from contains multiple values, the value will be added to the front of the output column.

names_prefix

String added to the start of every variable name. This is particularly useful if names_from is a numeric vector and you want to create syntactic variable names.

names_sep

If names_from or values_from contains multiple variables, this will be used to join their values together into a single string to use as a column name.

names_glue

Instead of names_sep and names_prefix, you can supply a glue specification that uses the names_from columns (and special .value) to create custom column names.

names_sort

Should the column names be sorted? If FALSE, the default, column names are ordered by first appearance.

names_repair

What happens if the output has invalid column names? The default, "check_unique" is to error if the columns are duplicated. Use "minimal" to allow duplicates in the output, or "unique" to de-duplicated by adding numeric suffixes. See vctrs::vec_as_names() for more options.

values_fill

Optionally, a (scalar) value that specifies what each value should be filled in with when missing.

This can be a named list if you want to apply different fill values to different value columns.

values_fn

A function, the default is length(). Note this is different behavior than tidyr::pivot_wider(), which returns a list column by default.

...

Additional arguments passed on to methods.

Examples

library(tidyr)

fish_encounters_dt <- lazy_dt(fish_encounters)
fish_encounters_dt
#> Source: local data table [114 x 3]
#> Call:   `_DT30`
#> 
#>   fish  station  seen
#>   <fct> <fct>   <int>
#> 1 4842  Release     1
#> 2 4842  I80_1       1
#> 3 4842  Lisbon      1
#> 4 4842  Rstr        1
#> 5 4842  Base_TD     1
#> 6 4842  BCE         1
#> # … with 108 more rows
#> 
#> # Use as.data.table()/as.data.frame()/as_tibble() to access results
fish_encounters_dt %>%
  pivot_wider(names_from = station, values_from = seen)
#> Source: local data table [19 x 12]
#> Call:   dcast(`_DT30`, formula = fish ~ station, value.var = "seen")
#> 
#>   fish  Release I80_1 Lisbon  Rstr Base_TD   BCE   BCW  BCE2  BCW2   MAE
#>   <fct>   <int> <int>  <int> <int>   <int> <int> <int> <int> <int> <int>
#> 1 4842        1     1      1     1       1     1     1     1     1     1
#> 2 4843        1     1      1     1       1     1     1     1     1     1
#> 3 4844        1     1      1     1       1     1     1     1     1     1
#> 4 4845        1     1      1     1       1    NA    NA    NA    NA    NA
#> 5 4847        1     1      1    NA      NA    NA    NA    NA    NA    NA
#> 6 4848        1     1      1     1      NA    NA    NA    NA    NA    NA
#> # … with 13 more rows, and 1 more variable: MAW <int>
#> 
#> # Use as.data.table()/as.data.frame()/as_tibble() to access results
# Fill in missing values
fish_encounters_dt %>%
  pivot_wider(names_from = station, values_from = seen, values_fill = 0)
#> Source: local data table [19 x 12]
#> Call:   dcast(`_DT30`, formula = fish ~ station, value.var = "seen", 
#>     fill = 0)
#> 
#>   fish  Release I80_1 Lisbon  Rstr Base_TD   BCE   BCW  BCE2  BCW2   MAE
#>   <fct>   <int> <int>  <int> <int>   <int> <int> <int> <int> <int> <int>
#> 1 4842        1     1      1     1       1     1     1     1     1     1
#> 2 4843        1     1      1     1       1     1     1     1     1     1
#> 3 4844        1     1      1     1       1     1     1     1     1     1
#> 4 4845        1     1      1     1       1     0     0     0     0     0
#> 5 4847        1     1      1     0       0     0     0     0     0     0
#> 6 4848        1     1      1     1       0     0     0     0     0     0
#> # … with 13 more rows, and 1 more variable: MAW <int>
#> 
#> # Use as.data.table()/as.data.frame()/as_tibble() to access results

# Generate column names from multiple variables
us_rent_income_dt <- lazy_dt(us_rent_income)
us_rent_income_dt
#> Source: local data table [104 x 5]
#> Call:   `_DT31`
#> 
#>   GEOID NAME    variable estimate   moe
#>   <chr> <chr>   <chr>       <dbl> <dbl>
#> 1 01    Alabama income      24476   136
#> 2 01    Alabama rent          747     3
#> 3 02    Alaska  income      32940   508
#> 4 02    Alaska  rent         1200    13
#> 5 04    Arizona income      27517   148
#> 6 04    Arizona rent          972     4
#> # … with 98 more rows
#> 
#> # Use as.data.table()/as.data.frame()/as_tibble() to access results
us_rent_income_dt %>%
  pivot_wider(names_from = variable, values_from = c(estimate, moe))
#> Source: local data table [52 x 6]
#> Call:   dcast(`_DT31`, formula = GEOID + NAME ~ variable, value.var = c("estimate", 
#> "moe"))
#> 
#>   GEOID NAME       estimate_income estimate_rent moe_income moe_rent
#>   <chr> <chr>                <dbl>         <dbl>      <dbl>    <dbl>
#> 1 01    Alabama              24476           747        136        3
#> 2 02    Alaska               32940          1200        508       13
#> 3 04    Arizona              27517           972        148        4
#> 4 05    Arkansas             23789           709        165        5
#> 5 06    California           29454          1358        109        3
#> 6 08    Colorado             32401          1125        109        5
#> # … with 46 more rows
#> 
#> # Use as.data.table()/as.data.frame()/as_tibble() to access results

# When there are multiple `names_from` or `values_from`, you can use
# use `names_sep` or `names_glue` to control the output variable names
us_rent_income_dt %>%
  pivot_wider(
    names_from = variable,
    names_sep = ".",
    values_from = c(estimate, moe)
  )
#> Source: local data table [52 x 6]
#> Call:   dcast(`_DT31`, formula = GEOID + NAME ~ variable, value.var = c("estimate", 
#> "moe"), sep = ".")
#> 
#>   GEOID NAME       estimate.income estimate.rent moe.income moe.rent
#>   <chr> <chr>                <dbl>         <dbl>      <dbl>    <dbl>
#> 1 01    Alabama              24476           747        136        3
#> 2 02    Alaska               32940          1200        508       13
#> 3 04    Arizona              27517           972        148        4
#> 4 05    Arkansas             23789           709        165        5
#> 5 06    California           29454          1358        109        3
#> 6 08    Colorado             32401          1125        109        5
#> # … with 46 more rows
#> 
#> # Use as.data.table()/as.data.frame()/as_tibble() to access results

# Can perform aggregation with values_fn
warpbreaks_dt <- lazy_dt(as_tibble(warpbreaks[c("wool", "tension", "breaks")]))
warpbreaks_dt
#> Source: local data table [54 x 3]
#> Call:   `_DT32`
#> 
#>   wool  tension breaks
#>   <fct> <fct>    <dbl>
#> 1 A     L           26
#> 2 A     L           30
#> 3 A     L           54
#> 4 A     L           25
#> 5 A     L           70
#> 6 A     L           52
#> # … with 48 more rows
#> 
#> # Use as.data.table()/as.data.frame()/as_tibble() to access results
warpbreaks_dt %>%
  pivot_wider(
    names_from = wool,
    values_from = breaks,
    values_fn = mean
  )
#> Source: local data table [3 x 3]
#> Call:   dcast(`_DT32`, formula = tension ~ wool, value.var = "breaks", 
#>     fun.aggregate = function (x, ...) 
#>     UseMethod("mean"))
#> 
#>   tension     A     B
#>   <fct>   <dbl> <dbl>
#> 1 L        44.6  28.2
#> 2 M        24    28.8
#> 3 H        24.6  18.8
#> 
#> # Use as.data.table()/as.data.frame()/as_tibble() to access results